par Debaste, Frédéric ;Halloin, Véronique
Référence Journal of food process engineering, 33, page (2-22)
Publication Publié, 2010
Article révisé par les pairs
Résumé : Yeast drying is widely used to ease transport and conservation. In this work, baker’s yeast drying in fluidized bed is modeled using a pore network model. Classical balanced equations at the reactor scale are coupled with the pore network for the grain, which takes into account diffusion in the gas phase, transport by liquid film in partially saturated region and pressure gradient effects in the liquid phase. The porous structure to be applied in the model is obtained using environmental scanning electron microscopy. Simulations are validated on a thermogravimetric analysis experiment. The model is then applied to fluidized bed drying for which experimental results obtained on a laboratory pilot are available. Finally, the model results are compared to those of a simplified receding front model.