Résumé : A series of 6,7-disubstituted 4H-1,2,4-benzothiadiazine 1,1-dioxides bearing a short alkylamino side chain in the 3-position were synthesized. These compounds were tested on rat pancreatic islets and on rat aorta rings. In vitro data indicated that in most cases substitution in the 6 and the 7 positions increased their activity as inhibitors of insulin secretion, while the myorelaxant potency of the drugs was maintained or enhanced according to the nature of the substituent in the 7-position. The presence of either chlorine or bromine atoms in the 6 and 7 positions did not improve the apparent selectivity of the drugs for the pancreatic tissue. By contrast, the introduction of one or two fluorine atoms, as well as the presence of a methoxy group in the 7-position, generated potent and selective inhibitors of insulin release. Radioisotopic and fluorimetric experiments performed with the most potent compound inhibiting insulin release (34, BPDZ 259, 6-chloro-7-fluoro-3-isopropylamino-4H-1,2,4-benzothiadiazine 1,1-dioxide) confirmed that the drug activated K(ATP) channels. 34 was found to be one of the most potent and selective pancreatic potassium channel openers yet described.