Résumé : Extracellular ATP and benzoyl-ATP (Bz-ATP) increased the release of [3H]arachidonic acid ([3H]AA) from prelabeled rat submandibular gland (RSMG) ductal cells respectively two- and threefold. Both agonists also increased the release of [3H]AA from acini but at a lower level (+50% and +100% respectively). Carbachol had no significant effect on either cellular population. In ductal cells phorbol myristate acetate, an activator of protein kinase C, slightly increased the basal release of [3H]AA but did not affect the release of [3H]AA in response to ATP. Staurosporine, an inhibitor of protein kinases, inhibited the response to the purines. The removal of calcium from the extracellular medium decreased the response to ATP and Bz-ATP. Only barium could partly substitute for calcium to restore the purinergic response. Zinc inhibited the release of [3H]AA. Permeabilization of the cells with streptolysin O (SLO) activated the calcium-independent phospholipase A2 activity (iPLA2). The iPLA2, not the calcium-dependent PLA2 (cPLA2), released [3H]oleic acid ([3H]OA) from RSMG ductal cells. It is concluded that RSMG ducts have a higher PLA2 activity when compared to acini. This activity is accounted for by iPLA2 and cPLA2. Both enzymes are activated by P2X agonists by a staurosporine-sensitive mechanism. Cells permeabilized with SLO or membranes from Escherichia coli as a substrate are not good models to study the regulation of these enzymes. In intact RSMG ductal cells the two activities can be distinguished by rather specific inhibitors, by different ionic conditions and also by the fatty acid used to label the cells.