par Lebrun, Philippe ;Atwater, I
Référence Biophysical journal, 48, 6, page (919-930)
Publication Publié, 1985-12
Référence Biophysical journal, 48, 6, page (919-930)
Publication Publié, 1985-12
Article révisé par les pairs
Résumé : | We studied the effects of the dihydropyridine derivative BAY K 8644 on the membrane potential of B-cells in mouse pancreatic islets. BAY K 8644, in a dose-dependent manner, decreased the spike frequency but increased the duration of the spikes elicited by glucose with or without quinine or tetraethylammonium (TEA). These effects were antagonized by cobalt and nifedipine but not by tetrodotoxin. The interval between spikes was proportionate to the duration of the spikes and the ratio of the interval to the spike duration was constant at all concentrations of BAY K 8644 tested. Peak inward current, estimated from the derivative of the action potential recorded in the presence of TEA, was increased by BAY K 8644 and decreased by nifedipine. BAY K 8644 elicited spike activity when the membrane was moderately depolarized by either 5.6 mM glucose or 15 mM K+, but did not change the membrane potential of the resting hyperpolarized B-cell. These results suggest that BAY K 8644 acts on the open Ca2+-channels. The threshold occurs at a membrane potential of -50 mV. Also, the modifications of the shape of the spikes appear to reflect specific changes in Ca2+ entry. We propose the existence of a Ca2+-induced Ca2+-channel inactivation process in the pancreatic B-cell. |