Résumé : In mammals, an adequate supply of thyroid hormones is essential for normal growth and neurological development. The biosynthesis of thyroid hormones involves an iodinated precursor protein, thyroglobulin, which may be considered an extreme example of a pro-hormone. Thyroglobulin is a dimeric glycoprotein of relative molecular mass (Mr) 660,000 (660K), which is secreted by the thyrocyte and stored in the lumen of the thyroid follicle. The hormonogenic reaction is extracellular, and involves iodination of tyrosyl residues of thyroglobulin and the intramolecular coupling of a subset of these into thyroxine (T4) and triiodothyronine (T3), which remain part of the polypeptide chain. Secretion of hormones results from the endocytosis of thyroglobulin followed by its complete hydrolysis in lysosomes. Considering that the maximum yield of hormones is approximately 6-8 per 660K protein, the whole process is apparently wasteful. However, the efficiency of thyroglobulin as a thyroid hormone precursor is extremely high when the supply of iodine is short; in such conditions, almost all the iodine incorporated is found in iodothyronine. Hence it is suggested that the thyroglobulin structure has evolved to allow for the preferential and efficient iodination and coupling of the hormonogenic tyrosines. Here we report the complete primary structure of bovine thyroglobulin, derived from the sequence of its 8,431-base-pair complementary DNA. The 2,769-amino-acid sequence is characterized by a pattern of imperfect repeats derived from three cysteine-rich motifs. Four hormonogenic tyrosines have been precisely localized near the amino and carboxyl ends of the protein.