Résumé : The human "26-kd protein' is a secreted glycoprotein expressed, for example, in (blood) leukocytes, in epithelial cells treated with various inducers, but most strongly in interleukin-1 (IL-1)-treated fibroblasts. After finding it has antiviral and 2-5A synthetase-inducing activity, one group of authors called this protein IFN-beta 2. However, recently the full-length 26-kd cDNA sequence was shown to be identical with that of a B-cell-differentiating lymphokine called BSF-2, and another report suggested that the 26-kd protein could support the growth of some transformed murine B cell lines. To define its biological activities, we expressed the recombinant 26-kd protein by translating in Xenopus laevis oocytes a pure, synthetic chimeric mRNA containing the 26-kd protein coding region surrounded by Xenopus laevis beta-globin untranslated regions. A similar construction, but containing the HuIFN-beta cDNA coding region, was used to produce HuIFN-beta by the same procedure. Both recombinant glycoproteins were secreted, glycosylated, and their amounts were measured by [35S]methionine incorporation by the oocyte. Here we show that the recombinant 26-kd protein exhibits a high growth factor activity when assayed on an IL-HP1-dependent murine B cell hybridoma (sp. act. approximately 2 X 10(8) U/mg) as well as a potent differentiating activity on human CESS cells (sp. act. approximately 5 X 10(7) U/mg). While rHuIFN-beta was inactive in the latter two assays, it had the expected antiviral activity of 1-5 X 10(8) U/mg. The parallel recombinant 26-kd protein preparations had no detectable antiviral activity (i.e. a maximal specific activity of 1-3 X 10(2) U/mg, if any). The 26-kd protein is thus clearly an interleukin, and considering the confusing nomenclature now in use, this factor may better be renamed "interleukin 6'.