Résumé : Foamed glass is a lightweight material commonly used for insulation. However, optimizing its properties remains a challenge due to the large number of synthesis parameters involved in its production. While previous studies have investigated synthesis conditions, a comprehensive study applying machine learning approaches is lacking in the literature. In this paper, we apply machine learning methods, i.e., random forests of predictive clustering trees and a multilayer perceptron, training them on 124 experimental data points to accurately predict the apparent density and closed porosity of foamed glass. We then apply a multiobjective optimization algorithm together with the multilayer perceptron to find optimal values for the process parameters used in foamed glass production. Our results show that the combination of machine learning and multiobjective optimization is an effective proxy for the development of novel foamed glass materials.