par Bulloni, Matteo;Sandrini, Giada;Stacchiotti, Irene;Barberis, Massimo;Calabrese, Fiorella;Carvalho, Lina;Fontanini, Gabriella;Alì, Greta;Fortarezza, Francesco;Hofman, Paul;Hofman, Veronique;Kern, Izidor;Maiorano, Eugenio;Maragliano, Roberta;Marchiori, Deborah;Metovic, Jasna;Papotti, Mauro;Pezzuto, Federica;Pisa, Eleonora;Remmelink, Myriam
;Serio, Gabriella;Marzullo, Andrea;Trabucco, Senia Maria Rosaria;Pennella, Antonio;De Palma, Angela;Marulli, Giuseppe;Fassina, Ambrogio;Maffeis, Valeria;Nesi, Gabriella;Naheed, Salma;Rea, Federico;Ottensmeier, Christian;Sessa, Fausto;Uccella, Silvia;Pelosi, Giuseppe;Pattini, Linda
Référence Cancers (Basel), 13, 19, 4875
Publication Publié, 2021-10

Référence Cancers (Basel), 13, 19, 4875
Publication Publié, 2021-10
Article révisé par les pairs
Résumé : | Lung neuroendocrine neoplasms (lung NENs) are categorised by morphology, defining a classification sometimes unable to reflect ultimate clinical outcome. Subjectivity and poor reproducibility characterise diagnosis and prognosis assessment of all NENs. Here, we propose a machine learning framework for tumour prognosis assessment based on a quantitative, automated and repeatable evaluation of the spatial distribution of cells immunohistochemically positive for the proliferation marker Ki-67, performed on the entire extent of high-resolution whole slide images. Combining features from the fields of graph theory, fractality analysis, stochastic geometry and information theory, we describe the topology of replicating cells and predict prognosis in a histology-independent way. We demonstrate how our approach outperforms the well-recognised prognostic role of Ki-67 Labelling Index on a multi-centre dataset comprising the most controversial lung NENs. Moreover, we show that our system identifies arrangement patterns in the cells positive for Ki-67 that appear independently of tumour subtyping. Strikingly, the subset of these features whose presence is also independent of the value of the Labelling Index and the density of Ki-67-positive cells prove to be especially relevant in discerning prognostic classes. These findings disclose a possible path for the future of grading and classification of NENs. |