par Pinto, Diogo
Président du jury Henneaux, Pierre
Promoteur Gyselinck, Johan
Co-Promoteur Kempkes, Joachim
Publication Non publié, 2021-08-24
Président du jury Henneaux, Pierre
Promoteur Gyselinck, Johan
Co-Promoteur Kempkes, Joachim
Publication Non publié, 2021-08-24
Thèse de doctorat
Résumé : | The number of electrical machines used in modern road-vehicles is continuously increasing to meet regulatory requirements regarding safety and efficiency, as well as consumer expectations in terms of comfort. For auxiliary applications, such as cooling fan or pumps, permanent-magnet synchronous machines (PMSMs) are extensively used owing to their high power density. This thesis focuses on the modelling aspects of PMSMs, with a particular focus on finite-element and reduced-order models to be used in system-level simulations. 2-D and 3-D parametric finite-element (FE) models are developed, allowing to compute irreversible demagnetization in addition to the standard quantities such as torque, back electromotive force and flux-linkages. The effects of magnet overhang on the performance of an interior PMSM is briefly discussed. Using the FE model, a reduced-order lookup-table (LUT) based electromagnetic model, having similar accuracy as FE analysis, is then developed. Coupled to a mechanical state-space representation obtained from a modal FE analysis, the final model allows to compute electromagnetic induced vibrations under pulse width modulation supply. The validation of the complete workflow is carried out on a 12slot-10pole PMSM used to drive a cooling fan. After fitting the damping coefficient in the structural state-space model, the results are in agreement with the experimental results. Due to the usage of LUTs, the simulation time is low compared to a pure FE analysis. This allows the model to be used to optimize low noise control strategies. To conclude this thesis, the parametric FE model is used in an optimization routine to minimize the cost and vibrations of the motor, whilst satisfying the working points. |