par Saracco, Paolo ![](/vufind/images/ULB/publications_list.png)
Référence Journal of Algebra and its Applications
Publication A Paraître, 2020-03-23
![](/vufind/images/ULB/publications_list.png)
Référence Journal of Algebra and its Applications
Publication A Paraître, 2020-03-23
Article révisé par les pairs
Résumé : | We prove that a quasi-bialgebra admits a preantipode if and only if the associated free quasi-Hopf bimodule functor is Frobenius, if and only if the related (opmonoidal) monad is a Hopf monad. The same results hold in particular for a bialgebra, tightening the connection between Hopf and Frobenius properties. |