Résumé : The objective of this study was to evaluate the early changes in serial serum levels of copeptin and neuron-specific enolase (NSE) in neonates diagnosed with birth asphyxia, and to determine whether these biomarkers measured in the first 168 hours after birth are predictive of long-term neurodevelopmental outcome. Copeptin and NSE levels were measured from serum samples collected 6, 12, 24, 48, 72, and 168 hours after birth from 75 term neonates diagnosed with hypoxic-ischemic encephalopathy (HIE) and treated with therapeutic hypothermia for 72 hours. In addition, serum copeptin levels after birth were measured from 10 HIE diagnosed neonates, who were randomized to the normothermic arm of the TOBY cohort. All neonates underwent neurodevelopmental assessment using the Bayley Scales of Infant and Toddler Development-II at two years of age. Copeptin levels were highest at 6 hours after birth and steadily decreased, whereas the highest NSE levels were measured at 24 hours after birth. The biomarker levels correlated with blood-gas parameters (base excess, pH and lactate) at 6 and 12 hours after birth. Copeptin and NSE levels in the early postnatal period were significantly higher in neonates with poor outcome compared to those with favorable outcome at two years of age. Furthermore, in the TOBY cohort, copeptin levels were significantly lower in hypothermic compared to normothermic neonates. To conclude, copeptin and NSE measured in the early postnatal period are potential prognostic biomarkers of long-term neurodevelopmental outcome in term neonates diagnosed with HIE and treated with therapeutic hypothermia.