par Van Eycke, Yves-Remi ;Balsat, Cédric ;Verset, Laurine ;Debeir, Olivier ;Salmon, Isabelle ;Decaestecker, Christine
Référence Medical image analysis, 49, page (35-45)
Publication Publié, 2018-10-01
Référence Medical image analysis, 49, page (35-45)
Publication Publié, 2018-10-01
Article révisé par les pairs
Résumé : | In this paper, we propose a method for automatically annotating slide images from colorectal tissue samples. Our objective is to segment glandular epithelium in histological images from tissue slides submitted to different staining techniques, including usual haematoxylin-eosin (H&E) as well as immunohistochemistry (IHC). The proposed method makes use of Deep Learning and is based on a new convolutional network architecture. Our method achieves better performances than the state of the art on the H&E images of the GlaS challenge contest, whereas it uses only the haematoxylin colour channel extracted by colour deconvolution from the RGB images in order to extend its applicability to IHC. The network only needs to be fine-tuned on a small number of additional examples to be accurate on a new IHC dataset. Our approach also includes a new method of data augmentation to achieve good generalisation when working with different experimental conditions and different IHC markers. We show that our methodology enables to automate the compartmentalisation of the IHC biomarker analysis, results concurring highly with manual annotations. |