par Aguilar Sanchez, Juan Antonio ;Bechet, Sabrina ;Bertrand, Daniel ;Hanson, Kael ;Heereman von Zuydtwyck, David ;Meures, Thomas ;O'Murchadha, Aongus ;Toscano, Simona ; [et al.]
Référence Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 703, page (190-198)
Publication Publié, 2013
Article révisé par les pairs
Résumé : The measurement of muon energy is critical for many analyses in large Cherenkov detectors, particularly those that involve separating extraterrestrial neutrinos from the atmospheric neutrino background. Muon energy has traditionally been determined by measuring the specific energy loss (dE/dx) along the muon's path and relating the dE/dx to the muon energy. Because high-energy muons (Eμ>1TeV) lose energy randomly, the spread in dE/dx values is quite large, leading to a typical energy resolution of 0.29 in log10(Eμ) for a muon observed over a 1 km path length in the IceCube detector. In this paper, we present an improved method that uses a truncated mean and other techniques to determine the muon energy. The muon track is divided into separate segments with individual dE/dx values. The elimination of segments with the highest dE/dx results in an overall dE/dx that is more closely correlated to the muon energy. This method results in an energy resolution of 0.22 in log10(Eμ), which gives a 26% improvement. This technique is applicable to any large water or ice detector and potentially to large scintillator or liquid argon detectors. © 2012 Elsevier B.V.