par Sutcliffe, Brian T. ;Czako, G.;Császár, Attila G;Szalay, V.
Référence The Journal of Chemical Physics, 126, 2
Publication Publié, 2007
Article révisé par les pairs
Résumé : The Coulomb three-body problem in Jacobi coordinates was solved by treating the distance of the particles having equal charge as a parameter. This method allows computation of electronic energies with finite nuclear masses while maintaining the notion of a potential energy curve. The rotationless ground-state electronic and the so-called adiabatic Jacobi correction (AJC) energies are presented for H2+, D2+, and H D+ at fixed internuclear separations. The AJCs are defined as the difference between the results obtained from calculations using proper finite and infinite nuclear masses. Except at the united atom limit, the AJCs are smaller than the traditional first-order diagonal Born-Oppenheimer corrections. Expectation values of proton-electron, p-e, and deuteron-electron, d-e, distances for H D+ have been computed as a function of internuclear separation. Similarly to the fully nonadiabatic approach, the present method is able to follow the symmetry breaking in H D+. Exact and approximate analytical and numerical results are given for counterfactual systems as well. In these cases changes are allowed for the values of the electron rest mass or the elementary charge, as well as for the mass or charge of the unique particle (electron). © 2007 American Institute of Physics.