Article révisé par les pairs
Résumé : Density differences across an autocatalytic chemical front traveling horizontally in covered thin layers of solution trigger hydrodynamic flows which can alter the concentration profile. We theoretically investigate the spatiotemporal evolution and asymptotic dynamics resulting from such an interplay between isothermal chemical reactions, diffusion, and buoyancy-driven convection. The studied model couples the reaction-diffusion-convection evolution equation for the concentration of an autocatalytic species to the incompressible Stokes equations ruling the evolution of the flow velocity in a two-dimensional geometry. The dimensionless parameter of the problem is a solutal Rayleigh number constructed upon the characteristic reaction-diffusion length scale. We show numerically that the asymptotic dynamics is one steady vortex surrounding, deforming, and accelerating the chemical front. This chemohydrodynamic structure propagating at a constant speed is quite different from the one obtained in the case of a pure hydrodynamic flow resulting from the contact between two solutions of different density or from the pure reaction-diffusion planar traveling front. The dynamics is symmetric with regard to the middle of the layer thickness for positive and negative Rayleigh numbers corresponding to products, respectively, lighter or heavier than the reactants. A parametric study shows that the intensity of the flow, the propagation speed, and the deformation of the front are increasing functions of the Rayleigh number and of the layer thickness. In particular, the asymptotic mixing length and reaction-diffusion-convection speed both scale as square root Ra for Ra>5. The velocity and concentration fields in the asymptotic dynamics are also found to exhibit self-similar properties with Ra. A comparison of the dynamics in the case of a monostable versus bistable kinetics is provided. Good agreement is obtained with experimental data on the speed of iodate-arsenous acid fronts propagating in horizontal capillaries. We furthermore compare the buoyancy-driven dynamics studied here to Marangoni-driven deformation of traveling chemical fronts in solution open to the air in the absence of gravity previously studied in the same geometry [L. Rongy and A. De Wit, J. Chem. Phys. 124, 164705 (2006)].