Résumé : Helodermin is a new peptide isolated from the venom of Heloderma suspectum. Its effects on rat pancreatic acini were compared with those of secretin and vasoactive intestinal peptide (VIP). Four classes of receptors with decreasing affinity for secretin (S1, S2, S3, and S4) were first delineated. Occupancy of S1 and S2 by secretin was responsible for a biphasic adenosine 3',5'-cyclic monophosphate (cAMP) response. S3 was VIP preferring so that the VIP-induced increase in cAMP could be inhibited by VIP-(10-28). S2 and S3 allowed cAMP elevation, protein phosphorylation, weak secretory effects, and potentiation of cholecystokinin octapeptide (CCK-8) when occupied by secretin and VIP, respectively. A more efficient exocytosis was observed with secretin interacting with low-affinity receptors S4. Helodermin increased cAMP levels 14-fold, this increase being inhibited by VIP-(10-28). Low concentrations of helodermin stimulated amylase secretion twofold and potentiated secretion by CCK-8. High concentrations of helodermin stimulated secretion another 2.6-fold. Helodermin bound to the four secretin receptors with a weak selectivity. At low concentration, helodermin stimulated cAMP elevation, protein phosphorylation, amylase release, and potentiation of CCK-8 through S3, whereas at high concentration it stimulated secretion via S4.