Article révisé par les pairs
Résumé : We have previously shown that human beta-cells are resistant to the toxic effects of alloxan. In order to further clarify this characteristic of human islets, we investigated whether these cells might transfer their alloxan resistance to alloxan-sensitive rat or mouse islets. Islets from two species (human-mouse or rat-mouse) were mixed into one graft, which was implanted into the subcapsular kidney space of nude mice. Alloxan or saline was injected intravenously two weeks after implantation and one week thereafter the mice were killed. The number of grafted and endogenous beta-cells were evaluated by a semi-quantitative method after immunohistochemistry. Human islet production of the scavenging enzymes extracellular superoxide dismutase and plasma glutathione peroxidase were analyzed with ELISA-techniques, and mouse and human islet hydrogen peroxide breakdown activity were monitored with a horseradish peroxidase-dependent assay. Mouse beta-cells transplanted together with human islets were protected against alloxan cytotoxicity. Rat islets did not protect mouse beta-cells against alloxan, suggesting that the mixing procedure as such did not impose the protection. Production of extracellular superoxide dismutase and plasma glutathione peroxidase by human islets was very low. Moreover, H2O2 breakdown in vitro, did not differ between human and mouse islets. Alloxan-insensitive human islets protect mouse beta-cells against alloxan-induced lesions, suggesting that yet to be identified extracellular factors are involved in human islet resistance to alloxan toxicity.