Article révisé par les pairs
Résumé : We analysed the co-ordination of the elevation angles of the thigh (alpha(t)), shank (alpha(s)) and foot (alpha(f)) during walking in 19 adults and 21 children (aged 11--144 months), including the very first unsupported steps in four. Cross-correlation functions (CCF) maturation of pairs of elevation angles was quantified by a global error parameter (Et((CCF))) reflecting the difference between particular CCF value of toddlers and mean adult value (Ea((CCF))). During the very first step, Et((CCF)) could be five times higher than Ea((CCF)). With walking experience, Et((CCF)) for both alpha(t)-alpha(s) and alpha(s)-alpha(f) pairs evolved following a biexponential profile, with a fast time constant below 6 months. Adult-like CCF parameters were reached earlier for alpha(s)-alpha(f) than alpha(t)-alpha(s), indicating disto-proximal maturation of the temporal co-ordination of the lower limb segments in human locomotion.