Résumé : SH2-containing inositol-5-phosphatase 1 (SHIP1) was originally identified as a 145 kDa protein that became tyrosine-phosphorylated in response to multiple cytokines. It is now well established that SHIP1 is specifically expressed in haemopoietic cells and is important as a negative regulator of signalling. We found recently that SHIP1 was present in human blood platelets as an Ins(1,3,4, 5)P(4)-phosphatase and a PtdIns(3,4,5)P(3)-5-phosphatase that became tyrosine-phosphorylated and was relocated to the cytoskeleton in an integrin-dependent manner. Here we report biochemical and pharmacological evidence that the tyrosine kinase pp60(c-src) is constitutively associated with SHIP1 and is involved in its tyrosine phosphorylation downstream of integrin engagement in thrombin-activated human platelets. The use of cytochalasin D allowed us to demonstrate that the actin cytoskeleton reorganization induced on thrombin stimulation was not required for its integrin-mediated phosphorylation. Moreover, the integrin-dependent relocation of SHIP1 to the cytoskeleton did not require its tyrosine phosphorylation. These results suggest that SHIP1 is first recruited to the integrin-linked signalling complexes and then becomes tyrosine-phosphorylated through a Src-kinase-dependent mechanism but independently of the actin cytoskeleton reorganization.