Article révisé par les pairs
Résumé : In order to have more reliable predictions of nuclear masses at the neutron drip line, we here go beyond the recent mass formula HFBCS-1 and present a new mass formula, HFB-1, based on the Hartree-Fock-Bogoliubov method. As with the HFBCS-1 mass formula, we use a 10-parameter Skyrme force along with a 4-parameter δ-function pairing force and a 2-parameter phenomenological Wigner term. However, with the original HFBCS-1 Skyrme force (MSk7), the rms error becomes unacceptably large and a new force fit is required. With the isoscalar and isovector effective masses constrained to be equal, the remaining 15 degrees of freedom are fitted to the masses of all the 1754 measured nuclei with A ≥ 16, N - Z > 2 given in the 1995 Audi-Wapstra compilation. The rms error with respect to the masses of all the 1888 measured nuclei with Z, N ≥ 8 is 0.764 MeV. A complete mass table, HFB-1 (available on the Web), has been constructed, giving all nuclei lying between the two drip lines over the range Z, N ≥ 8 and Z ≤ 120. A comparison between HFB-1 and HFBCS-1 mass tables shows that the HFBCS model is a very good approximation of the HFB theory, in particular for masses, the extrapolated masses never differing by more than 2 MeV below Z ≤ 110. We also find that the behaviour of shell gaps far away from the region of beta stability does not depend on whether the HFBCS or HFB methods are used, in particular, no quenching of astrophysical interest arises from replacing the BCS method by the Bogoliubov method. © 2002 Elsevier Science B.V. All rights reserved.