par Kober, Stefan
Référence Lecture notes in computer science, 15620 LNCS, page (355-370)
Publication Publié, 2025-01-01
Article révisé par les pairs
Résumé : Integer programs (IPs) on constraint matrices with bounded subdeterminants are conjectured to be solvable in polynomial time. We give a strongly polynomial time algorithm to solve IPs where the constraint matrix has bounded subdeterminants and at most two non-zeros per row after removing a constant number of rows and columns. This result extends the work by Fiorini, Joret, Weltge & Yuditsky (J. ACM 72(1), 1–50 (2025)) by allowing for additional, unifying constraints and variables.