par Stergiou, Yorgos;Escala, Darío Martín ;Papp, Paszkál;Horváth, Dezso;Hauser, Markus;Brau, Fabian ;De Wit, Anne ;Tóth, Ágota;Eckert, Kerstin;Schwarzenberger, Karin
Référence npj Microgravity, 10, 1, 53
Publication Publié, 2024-05-09
Référence npj Microgravity, 10, 1, 53
Publication Publié, 2024-05-09
Article révisé par les pairs
Résumé : | Radial Reaction–Diffusion–Advection (RDA) fronts for A + B → C reactions find wide applications in many natural and technological processes. In liquid solutions, their dynamics can be perturbed by buoyancy-driven convection due to concentration gradients across the front. In this context, we conducted microgravity experiments aboard a sounding rocket, in order to disentangle dispersion and buoyancy effects in such fronts. We studied experimentally the dynamics due to the radial injection of A in B at a constant flow rate, in absence of gravity. We compared the obtained results with numerical simulations using either radial one– (1D) or two–dimensional (2D) models. We showed that gravitational acceleration significantly distorts the RDA dynamics on ground, even if the vertical dimension of the reactor and density gradients are small. We further quantified the importance of such buoyant phenomena. Finally, we showed that 1D numerical models with radial symmetry fail to predict the dynamics of RDA fronts in thicker geometries, while 2D radial models are necessary to accurately describe RDA dynamics where Taylor–Aris dispersion is significant. |