par Aprile, Manuel;Drescher, Matthew
;Fiorini, Samuel
;Huynh, Tony ![](/vufind/images/ULB/publications_list.png)
Référence Discrete applied mathematics, 337, page (149-160)
Publication Publié, 2023-10
![](/vufind/images/ULB/publications_list.png)
![](/vufind/images/ULB/publications_list.png)
![](/vufind/images/ULB/publications_list.png)
Référence Discrete applied mathematics, 337, page (149-160)
Publication Publié, 2023-10
Article révisé par les pairs
Résumé : | We study the feedback vertex set problem in tournaments from the polyhedral point of view, and in particular we show that performing just one round of the Sherali–Adams hierarchy gives a relaxation with integrality gap 7/3. This allows us to derive a 7/3-approximation algorithm for the feedback vertex set problem in tournaments that matches the best deterministic approximation guarantee due to Mnich, Williams, and Végh, and is a simplification and runtime improvement of their approach. |