par Doyen, Jean ;Kantor, William M.
Référence Algebraic combinatorics, 5, 4, page (593-608)
Publication Publié, 2022
Article révisé par les pairs
Résumé : If G is a finite group then there is an integer MG such that, for u > MG and u ≡ 1 or 3 (mod 6), there is a Steiner triple system U on u points for which AutU ∼= G. If V is a Steiner triple system then there is an integer NV such that, for u > NV and u ≡ 1 or 3 (mod 6), there is a Steiner triple system U on u points having V as an AutU-invariant subsystem such that AutU ∼= AutV and AutU induces AutV on V .