Article révisé par les pairs
Résumé : The agricultural sector in Syria was heavily affected by the civil war that started in 2011. We investigate the war’s impact on the country’s atmospheric ammonia (NH3) from 2008 to 2019, using measurements from the infrared atmospheric sounding interferometer instrument on board the Metop satellites. We examine the changes in NH3 close to a fertilizer industry, whose activities were suspended due to conflict-related events. We also explore the effect of war-induced land use/land cover changes on agriculture-emitted ammonia in north-east Syria that has witnessed battles between different groups. The interpretation of the changes in NH3 is supported by different datasets: visible satellite imagery to assess the effect on industrial activity, reanalysis data from the European center for medium-range weather forecasts to look at the effect of meteorology (temperature, wind speed, and precipitation), and land cover and burned area products from the moderate resolution imaging spectroradiometer (MODIS) to examine land use/land cover changes and fire events during the study period. We show that the NH3 columns are directly affected by the war. Periods of intense conflict are reflected in lower values over the industry reaching –17%, –47%, and –32% in 2013, 2014, and 2016, respectively, compared to the [2008–2012] average, and a decrease reaching –14% and –15% in the croplands’ area in northeast Syria during 2017 and 2018 (compared to 2011), respectively. Toward the end of the control of Islamic State in Iraq and Syria, an increase in atmospheric NH3 was accompanied by an increase in croplands’ area that reached up to +35% in 2019 as compared to prewar (2011). This study shows the relevance of remote-sensing data of atmospheric composition in studying societal changes at a local and regional scale.