par Courbon, E.;D'Ans, Pierre ;Skrylnyk, O.;Frère, M.
Référence Journal of Energy Storage, 32, 101699
Publication Publié, 2020-12-01
Article révisé par les pairs
Résumé : Four different LiBr-based composite materials have been synthesized with silica gel or activated carbon as host porous matrix. High salt contents were incorporated in these composites: 37 wt% and 53 wt% for silica gel/LiBr composites; 32 wt% and 42 wt% for activated carbon/LiBr composites. The performance of these materials in conditions representative of the applications of sanitary hot water production and space heating demonstrates the very high potential of the silica gel/LiBr 53 wt% composite. It exhibits an unprecedented energy storage density of 261 kWh/m3 (adsorption temperature: 30 °C, desorption temperature: 80 °C and water vapor pressure of 12.5 mbar) and of 381 kWh/m3 when the desorption temperature reaches 120 °C. This promising material presents a good composition homogeneity, high water uptakes between 10 °C and 80 °C, and no measurable loss of sorption properties upon 10 cycles. This composite was tested in an open type laboratory set-up to complete its analysis for heat storage applications, at the scale of 200 g. The best energy storage density reached during 3 h 26 min was as high as 246 kWh/m³ (adsorption temperature: ~29 °C and water vapor pressure of ~12.5 mbar).