Thèse de doctorat
Résumé : This PhD thesis addresses the development of novel computational methods for designing modular structures i.e., structures composed of the assembly of identical components called modules. Current methodologies tackle this challenge by implementing topology optimization of the module but their efficiency is limited by the performance deterioration when numerous modules are used in the structure. In this work, the design of lightweight modular structures is addressed by simultaneously optimizing the topology of the modules and their respective position in the structure. This contribution also includes a novel strategy that reconciles lightness, structural performance, and constructability (i.e., fabrication and erection phases) by incorporating module rotations as additional design variables. To ensure the practical applicability of the proposed approach, stability is included to provide meaningful solutions that are globally stable and resist local buckling. For this purpose, global stability constraints using linear prebuckling are adopted, while local stability is formulated based on Euler buckling and properties of standard profiles obtained from commercial catalogues.