par Reggiani, Claudio
;Le Borgne, Yann-Aël
;Bontempi, Gianluca 
Référence Communications in computer and information science, 823, page (101-115)
Publication Publié, 2018



Référence Communications in computer and information science, 823, page (101-115)
Publication Publié, 2018
Article révisé par les pairs
Résumé : | This paper describes a distributed MapReduce implementation of the minimum Redundancy Maximum Relevance algorithm, a popular feature selection method in bioinformatics and network inference problems. The proposed approach handles both tall/narrow and wide/short datasets. We further provide an open source implementation based on Hadoop/Spark, and illustrate its scalability on datasets involving millions of observations or features. |