Résumé : The chemokine CXCL12 or stromal cell-derived factor 1/SDF-1 attracts hematopoietic progenitor cells and mature leukocytes through the G protein-coupled CXC chemokine receptor 4 (CXCR4). In addition, it interacts with atypical chemokine receptor 3 (ACKR3 or CXCR7) and glycosaminoglycans. CXCL12 activity is regulated through posttranslational cleavage by CD26/dipeptidyl peptidase 4 that removes two N-terminal amino acids. CD26-truncated CXCL12 does not induce calcium signaling or chemotaxis of mononuclear cells. CXCL12(3-68) was chemically synthesized de novo for detailed biological characterization. Compared to unmodified CXCL12, CXCL12(3-68) was no longer able to signal through CXCR4 via inositol trisphosphate (IP3), Akt or extracellular signal-regulated kinases 1 and 2 (ERK1/2). Interestingly, the recruitment of β-arrestin 2 to the cell membrane via CXCR4 by CXCL12(3-68) was abolished, whereas a weakened but significant β -arrestin recruitment remained via ACKR3. CXCL12-induced endothelial cell migration and signal transduction was completely abrogated by CD26. Intact CXCL12 hardly induced lymphocyte migration upon intra-articular injection in mice. In contrast, oral treatment of mice with the CD26 inhibitor sitagliptin reduced CD26 activity and CXCL12 cleavage in blood plasma. CXCL12's potential to induce intra-articular lymphocyte infiltration was significantly increased in sitagliptin-treated mice and CXCL12(3-68) failed to induce migration under both CD26-inhibiting and non-inhibiting conditions. In conclusion, CD26-cleavage skews CXCL12 towards β -arrestin dependent recruitment through ACKR3 and destroys the CXCR4-mediated lymphocyte chemoattractant properties of CXCL12 in vivo. Hence, pharmacological CD26-blockade in tissues may enhance CXCL12-induced inflammation.