par Detournay, Stéphane ;Grumiller, Daniel;Troncoso, Ricardo;Afshar, Hamid;Merbis, Wout;Pérez, Alfredo;Tempo, David
Référence Physical Review D - Particles, Fields, Gravitation and Cosmology
Publication Publié, 2016-05-18
Article révisé par les pairs
Résumé : Three-dimensional Einstein gravity with a negative cosmological constant admits stationary black holes that are not necessarily spherically symmetric. We propose boundary conditions for the near-horizon region of these black holes that lead to a surprisingly simple near-horizon symmetry algebra consisting of two affine u^(1) current algebras. The symmetry algebra is essentially equivalent to the Heisenberg algebra. The associated charges give a specific example of "soft hair" on the horizon, as defined by Hawking, Perry and Strominger. We show that soft hair does not contribute to the Bekenstein-Hawking entropy of Bañados-Teitelboim-Zanelli black holes and "black flower" generalizations. From the near-horizon perspective the conformal generators at asymptotic infinity appear as composite operators, which we interpret in the spirit of black hole complementarity. Another remarkable feature of our boundary conditions is that they are singled out by requiring that the whole spectrum is compatible with regularity at the horizon, regardless of the value of the global charges like mass or angular momentum. Finally, we address black hole microstates and generalizations to cosmological horizons.