Résumé : Au vu de leurs différentes propriétés, les matériaux cimentaires sont largement considérés dans les différents projets de gestion de déchets radioactifs. Leurs propriétés mécaniques, leurs faibles coefficients de transport ainsi que leur capacité à fixer les principaux radionucléides sont les principaux avantages qui en font un des meilleurs choix pour la conception des barrières ouvragées.Pour les études de sûreté, leur durabilité est capitale. Au cours de la vie d’un tel dépôt,via l’infiltration d’eau ou les interfaces chimiquement agressives avec les argiles, les différents matériaux vont subir des perturbations physicochimiques qui vont altérer leurs structures et potentiellement compromettre leurs fonctions de sûreté. L’étendue de ces perturbations, fondamentale pour l’étude de sûreté, est contrôlée par les propriétés de transport de ces matériaux.Pour modéliser proprement ces phénomènes, il faut pouvoir coupler les évolutions géochimiques des matériaux tout en évaluant le transport à travers ceux-ci. C’est le but de différents codes de transport réactif, qui utilisent une loi de rétroaction pour modifier les propriétés de transport lors d’une modification de microstructure. Le problème est qu’il n’existe pas de loi de rétroaction adaptée aux matériaux cimentaires, qui possèdent une structure poreuse complexe du nanomètre jusqu’à plusieurs micromètres. En général, des lois empiriques de type Archie sont utilisées. Toutefois, même l’utilisation de lois plus sophistiquées ne permet pas de reproduire sensiblement les évolutions liées à la structure porale. Cette loi de rétroaction est probablement la principale raison pour laquelle les résultats de simulation ont du mal à reproduire lesrésultats expérimentaux. Le but de cette thèse est de proposer une meilleure loi de rétroaction et de l’intégrer dans un code de transport réactif.Pour ce faire, trois approches complémentaires ont été mises en oeuvre. La première, expérimentale,consiste en la réalisation des matériaux cimentaires les plus simples possibles : des phases C-S-H pures et une pâte de ciment modèle. Ces matériaux sont ensuite caractérisés finement : leurs propriétés de transport sont évaluées et une description fine de leur microstructure est obtenue. L’approche expérimentale consiste ensuite en la dégradation (par lixiviation et carbonatation sous eau) de la pâte de ciment modèle, afin de comprendre l’impact de ces dégradations sur la microstructure et les propriétés de transport.La deuxième partie, numérique, consiste en l’obtention d’un volume élémentaire représentatif de la pâte de ciment modèle, basée sur les caractérisations expérimentales. Différentes analyses de sensibilité et de propriétés de transport permettent de comprendre les liens entre les différents paramètres et les propriétés effectives. Ensuite, l’approche numérique modélise les dégradations.Ces approches numériques démontrent pourquoi les approches empiriques fonctionnent dans certains cas, et pas dans d’autres.La dernière partie dédiée à la modélisation mathématique développe une approche d’homogénéisation statistique de la diffusion, basée sur une description du phénomène à l’échelle du pore. Cette étude met en évidence des paramètres clés qui contrôlent les propriétés effectives de diffusion.C’est ce pour quoi il est démontré que cette approche, en plus d’être très adaptée aux matériaux cimentaires, est applicable à un large spectre de microstructures. Les paramètres mis en évidences ont intrinsèquement sensibles aux propriétés de percolation et de connectivités de la structure poreuse, qui sont centrales pour la compréhension des propriétés effectives de transport ainsi que l’impact des dégradations. La finalité de la thèse consiste en le couplage de ces différentes approches et en l’incorporation de celles-ci dans un code de transport réactif. Les résultats obtenus en utilisant différentes lois de rétroaction sont comparés entre eux. L’utilisation de lois de rétroaction basée sur l’étude tri-dimensionnelle de la microstructure améliore la comparaison aux résultats expérimentaux.