Thèse de doctorat
Résumé : Le mélanome est une tumeur réputée radiorésistante. Ceci est conforté par ses caractéristiques radiobiologiques observées notamment in vitro. Le mélanocyte dont la transformation maligne engendre cette tumeur est le siège d’un métabolisme unique, la mélanogenèse. Celle-ci produit des pigments bien connus dans leur rôle de photoprotecteurs, mais leur éventuelle participation à une modulation de la sensibilité de ces cellules aux radiations ionisantes bien que suggérée dans la littérature, ne révèle que quelques résultats publiés criticables voire contradictoires. Notre travail s’est intéressé à préciser les rôles des pigments et du stress oxydant généré par les radiations ionisantes dans la modulation de la radiosensibilité du mélanocyte malin et d’en évaluer l’impact aussi bien sur la survie cellulaire, les lésions à l'ADN qu' aux processus de mort cellulaire. Nos résultats montrent que la nature du pigment, les eumélanines (pigment brun ou noir) en particulier ainsi que leur quantité influencent directement la radiosensibilité des cellules en terme de survie. Ceci a été démontré aussi bien en comparant des lignées cellulaires de pigmentation différentes qu’en stimulant cette dernière par son précurseur naturel, la tyrosine. D’autre part et d’une manière inattendue, l’altération de la barrière chimique cellulaire la plus importante que représentent les radioprotecteurs : Glutathion et son précurseur, Cystéine, semble favoriser la survie des mélanocytes malins au lieu d’en augmenter la radiosensibilité. Or, ces deux molécules sont aussi impliquées dans la mélanogenèse et entrent même dans la composition d’un type de pigments riches en soufre que sont les phaeomélanines. La mesure de la balance des deux types de pigments dans ces conditions nous a fourni un élément de réponse : en absence de GSH et surtout de Cys, l’eumélanogenèse a été favorisée en rejoignant ainsi nos premiers résultats concernant la manipulation des pigments. Nous avons également examiné les lésions immédiates à l’ADN occasionnées par l’irradiation dans les mêmes conditions que pour la survie cellulaire. Nos résultats montrent une protection significative de l’ADN lorsque la pigmentation est stimulée soit par la tyrosine, soit par déplétion de cystéine. Aussi une corrélation a pu être établie entre ces effets, l’aboutissement de l’apoptose radioinduite et la survie cellulaire. Enfin, nous nous sommes intéressés à la stimulation directe de la mélanogenèse par les radiations ionisantes. Nous avons observé un effet activateur dose-dépendant sur la tyrosinase, l’enzyme-clé de la pigmentation. Les mécanismes par lesquels les pigments, spécialement les eumélanines, agissent, pourraient être liés aux propriétés protectrices connues pour ces pigments comme pièges des radicaux libres. Cependant, une interaction directe des radiations avec le polymère solide, lui-même contenant des métaux lourds, n’est pas à écarter. En conclusion, les mélanines semblent fortement impliquées dans la modulation de la radiosensibilité du mélanocyte malin et peuvent compenser la perte des deux radioprotecteurs cellulaires les plus importants, le Glutathion et surtout la Cystéine. Est-ce qu’une stratégie consistant en l’inhibition de la formation de pigments trouverait sa place en radiothérapie du mélanome ? est une question ouverte par ce travail.