par Magin, Thierry
Président du jury Deconinck, Herman
Promoteur Degrez, Gérard
Publication Non publié, 2004-06-10
Thèse de doctorat
Résumé : A numerical model for inductive plasma wind tunnels is developed. This model provides the flow conditions at the edge of a boundary layer in front of a thermal protection material placed in the plasma jet stream at the outlet of an inductive torch. The governing equations for the hydrodynamic field are derided from the kinetic theory. The electromagnetic field is deduced from the Maxwell equations. The transport properties of partially ionized and unmagnetized plasma in weak thermal nonequilibrium are derived from the Boltzmann equation. A kinetic data base of transport collision integrals is given for the Martian atmosphere. Multicomponent transport algorithms based upon Krylov subspaces are compared to mixture rules in terms of accuracy and computational cost. The composition and thermodynamic properties in local thermodynamic

equilibrium are computed from the semi-classical statistical mechanics.

The electromagnetic and hydrodynamic fields of an inductive wind tunnel is presented. A total pressure measurement technique is thoroughly investigated by means of numerical simulations.