Résumé : In swarm robotics, the control of a group of robots is often fully distributed and does not rely on any leader. In this thesis, we are interested in understanding how to design collective decision making processes in such groups. Our approach consists in taking inspiration from nature, and especially from self organization in social insects, in order to produce effective collective behaviors in robot swarms. We have devised four robotics experiments that allow us to study multiple facets of collective decision making. The problems on which we focus include cooperative transport of objects, robot localization, resource selection, and resource discrimination.

We study how information is transferred inside the groups, how collective decisions arise, and through which particular interactions. Important properties of the groups such as scalability, robustness, and adaptivity are also investigated. We show that collective decisions in robot swarms can effectively arise thanks to simple mechanisms of imitation and amplification. We experimentally demonstrate their implementation with direct or indirect information transfer, and with robots that can distinguish the available options partially or not at all.