par Moulin, Laure ;Grosjean, Philippe ;Leblud, Julien;Batigny, A.;Dubois, Philippe
Référence Journal of experimental marine biology and ecology, 457, page (97-104)
Publication Publié, 2014
Référence Journal of experimental marine biology and ecology, 457, page (97-104)
Publication Publié, 2014
Article révisé par les pairs
Résumé : | Due to their low metabolism and apparent poor ion regulation ability, sea urchins could be particularly sensitive to ocean acidification resulting from increased dissolution of atmospheric carbon dioxide. Therefore, we evaluated the acid-base regulation ability of the coral reef sea urchin Echinometra mathaei and the impact of decreased pH on its growth and respiration activity. The study was conducted in two identical artificial reef mesocosms during seven weeks. Experimental tanks were maintained respectively at mean pHT 7.7 and 8.05 (with field-like night and day variations). The major physico-chemical parameters were identical, only pCO2 and pHT differed. Results indicate that E. mathaei can regulate the pH of its coelomic fluid in the considered range of pH, allowing a sustainable growth and ensuring an unaffected respiratory metabolism, at least at short term. © 2014 Elsevier B.V. |