Résumé : We describe a method for the determination of stellar [C/Fe] abundance ratios using low-resolution (R = 2000) stellar spectra from the Sloan Digital Sky Survey (SDSS) and its Galactic sub-survey, the Sloan Extension for Galactic Understanding and Exploration (SEGUE). By means of a star-by-star comparison with a set of SDSS/SEGUE spectra with available estimates of [C/Fe] based on published high-resolution analyses, we demonstrate that we can measure [C/Fe] from SDSS/SEGUE spectra with S/N ≥ 15 Å-1 to a precision better than 0.35 dex for stars with atmospheric parameters in the range T eff = [4400, 6700] K, log g = [1.0, 5.0], [Fe/H] = [-4.0, +0.5], and [C/Fe] = [-0.25, +3.5]. Using the measured carbon-to-iron abundance ratios obtained by this technique, we derive the frequency of carbon-enhanced stars ([C/Fe] ≥ +0.7) as a function of [Fe/H], for both the SDSS/SEGUE stars and other samples from the literature. We find that the differential frequency slowly rises from almost zero to about 14% at [Fe/H] ∼ -2.4, followed by a sudden increase, by about a factor of three, to 39% from [Fe/H] ∼ -2.4 to [Fe/H] ∼ -3.7. Although the number of stars known with [Fe/H] < -4.0 remains small, the frequency of carbon-enhanced metal-poor (CEMP) stars below this value is around 75%. We also examine how the cumulative frequency of CEMP stars varies across different luminosity classes. The giant sample exhibits a cumulative CEMP frequency of 32% for [Fe/H] ≤ -2.5, 31% for [Fe/H] ≤ -3.0, and 33% for [Fe/H] ≤ -3.5; a roughly constant value. For the main-sequence turnoff stars, we obtain a lower cumulative CEMP frequency, around 10% for [Fe/H] ≤ -2.5, presumably due to the difficulty of identifying CEMP stars among warmer turnoff stars with weak CH G-bands. The dwarf population displays a large change in the cumulative frequency for CEMP stars below [Fe/H] = -2.5, jumping from 15% for [Fe/H] ≤ -2.5 to about 75% for [Fe/H] ≤ -3.0. When we impose a restriction with respect to distance from the Galactic mid-plane (