Résumé : This study provides an up-to-date and comprehensive review of the Early Palaeozoic evolution of the Brabant Massif belonging to the Anglo-Brabant Deformation Belt. Situated at the southeastern side of Avalonia microplate, it is the only well-known part of the northern passive margin of the Rheic Ocean. The Cambrian– Silurian sedimentary pile is > 13 km thick, with > 9 km for the Cambrian only. The unraveling of this continuous registration reflects the successive rifting and drifting of Avalonia from the Gondwana mainland, followed by soft-collisional processes with Baltica and finally the formation of Laurussia. Based on recently established de- tailed stratigraphy, sedimentology and basin development, on U–Pb LA-ICP-MS analyses of igneous and detrital zircon grains along with geochemical data including Sm–Nd isotopes, a new geodynamic and palaeogeographic evolution is proposed. Brabant Megasequence 1 (lower Cambrian to lowermost Ordovician, > 9 km thick) repre- sents an embayment of the peri-Gondwanan rift from which the Rheic Ocean has evolved. Detrital zircon ages demonstrate that the Brabant is a typical peri-Gondwanan terrane with a major Pan-African (Neopro- terozoic age) and a mixed West African and Amazonian source (Palaeoproterozoic, Archaean and some Mesoproterozoic age). The transition towards the Avalonia drifting is marked by an unconformity and a short volcanic episode. The northward drift of Avalonia towards Baltica is recorded by the Megasequence 2 (Middle to Upper Ordovician, 1.3 km thick). The source for Mesoproterozoic zircons vanished, as the re- sult of the Rheic Ocean opening and the isolation from Amazonian sources. The transition to Megasequence 3 is marked by a drastic change in palaeobathymetry and an important (sub)volcanic episode during a tec- tonic instability period (460–430 Ma), reflecting the Avalonia–Baltica soft docking as also shown by the reappearance of Mesoproterozoic detrital zircons, typical of Baltica. Unradiogenic Nd isotope signature (εNd − 4/− 5) and TDM model ages (1.3–1.7 Ga) for Brabant magmatic rocks indicate an old recycled com- ponent. Megasequence 3 (uppermost Ordovician to lowermost Devonian; > 3.5 km thick) includes the onset of a Silurian foreland basin that reflects the tectonic inversion of the core of the massif (Brabantian orogeny) in response to the Baltica–Avalonia–Laurentia collision. Finally, the comparison with the striking- ly similar Cambrian successions of the Harlech Dome (Wales, Avalonia) and the Meguma terrane (Nova Sco- tia, peri-Gondwana) allows the construction of a new Early Cambrian palaeogeographic model for the whole Avalonia microplate, in which the Meguma terrane is included.