Résumé : Endothelial dysfunction is associated with the formation of peroxynitrite, described to be toxic. Recent data also suggests that peroxynitrite is able to activate the protective Nrf2 pathway and/or the unfolded protein response (UPR). The aim of our work was to study the response of human endothelial cells to 3-morpholinosydnonimine (SIN-1), a peroxynitrite donor, and to highlight the possible protective roles of Nrf2 or the UPR pathway in this response. Immortal and primary human umbilical vein endothelial cells were exposed to SIN-1. SIN-1 incubation led to Nrf2 activation and to the overexpression of Nrf2-regulated genes, heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase 1. We also demonstrated that this defensive response protected cells against cell death induced by serum starvation, by reducing apoptosis (monitored by caspase-3 activity and DNA fragmentation) and favoring autophagosome formation, as evidenced by LC3-II accumulation. Interestingly, we observed an activation of the UPR, with a rapid and significant overexpression of CHOP in serum starved cells stimulated with SIN-1. While siRNA mediated knockdown of CHOP had no effect on DNA fragmentation, the invalidation of Nrf2 or HO-1 by siRNA strongly increased DNA fragmentation, but also reinforced the SIN-1-induced LC3-II accumulation. This study shows that peroxynitrite, at least at sublethal concentrations and within a narrow concentration range, could exert protective effects on endothelial cells by modulating the balance between autophagy and apoptosis, through Nrf2-dependent pathways.