Articles dans des revues avec comité de lecture (32)

  1. 1. Cunningham, J., & Roland, J. (2024). Eigenpath Traversal by Poisson-Distributed Phase Randomisation. Leibniz international proceedings in informatics, 310, 7. doi:10.4230/LIPIcs.TQC.2024.7
  2. 2. Hu, X. M., Xie, Y., Arora, A. S., Ai, M. Z., Bharti, K., Zhang, J., Wu, W., Chen, P. X., Cui, J. M., Liu, B. H., Huang, Y. F., Li, C. F., Guo, G. C., Roland, J., Cabello, A., & Kwek, L. C. (2023). Self-testing of a single quantum system from theory to experiment. npj Quantum Information, 9(1), 103. doi:10.1038/s41534-023-00769-7
  3. 3. Apers, S., Chakraborty, S., Goncalves Novo, L. F., & Roland, J. (2022). Quadratic Speedup for Spatial Search by Continuous-Time Quantum Walk. Physical review letters, 129(16). doi:10.1103/PhysRevLett.129.160502
  4. 4. Chakraborty, S., Goncalves Novo, L. F., & Roland, J. (2020). Optimality of spatial search via continuous-time quantum walks. Physical Review A, 102(3). doi:10.1103/PhysRevA.102.032214
  5. 5. Chakraborty, S., Luh, K., & Roland, J. (2020). Analog quantum algorithms for the mixing of Markov chains. Physical Review A, 102(2). doi:10.1103/PhysRevA.102.022423
  6. 6. Chakraborty, S., Goncalves Novo, L. F., & Roland, J. (2020). Finding a marked node on any graph via continuous-time quantum walks. Physical Review A, 102(2). doi:10.1103/PhysRevA.102.022227
  7. 7. Bharti, K., Arora, A. S., Kwek, L. C., & Roland, J. (2020). Uniqueness of all fundamental noncontextuality inequalities. Physical Review Research, 2(3). doi:10.1103/PhysRevResearch.2.033010
  8. 8. Chakraborty, S., Luh, K., & Roland, J. (2020). How Fast Do Quantum Walks Mix? Physical review letters, 124(5), 050501. doi:10.1103/PhysRevLett.124.050501
  9. 9. Laplante, S., Laurière, M., Nolin, A., Roland, J., & Senno, G. (2018). Robust Bell inequalities from communication complexity. Quantum, 2, 72. doi:10.22331/q-2018-06-07-72
  10. 10. Fontes, L., Jain, R., Kerenidis, I., Laplante, S., Laurière, M., & Roland, J. (2016). Relative discrepancy does not separate information and communication complexity. ACM Transactions on Computational Theory, 9(1), 4. doi:10.1145/2967605
  11. 11. Magnin, L., & Roland, J. (2015). Explicit relation between all lower bound techniques for quantum query complexity. International Journal of Quantum Information, 13(4), 1350059. doi:10.1142/S0219749913500597
  12. 12. Krovi, H., Magniez, F., Ozols, M., & Roland, J. (2015). Quantum walks can find a marked element on any graph. Algorithmica, 74(2), 851-907. doi:10.1007/s00453-015-9979-8

  13. << Précédent 1 2 3 4 5 6 Suivant >>