Articles dans des revues avec comité de lecture (33)

  1. 13. Kerenidis, I., Laplante, S., Lerays, V., Roland, J., & Xiao, D. (2015). Lower Bounds on Information Complexity via Zero-Communication Protocols and Applications. SIAM journal on computing, 44(5), 1204.1505, 1550-1572. doi:10.1137/130928273
  2. 14. Magnin, L., & Roland, J. (2015). Explicit relation between all lower bound techniques for quantum query complexity. International Journal of Quantum Information, 13(4), 1350059. doi:10.1142/S0219749913500597
  3. 15. Ozols, M., Roetteler, M., & Roland, J. (2013). Quantum rejection sampling. ACM Transactions on Computational Theory, 5(3), 11, 1-33. doi:10.1145/2493252.2493256
  4. 16. Lee, T., & Roland, J. (2013). A strong direct product theorem for quantum query complexity. Computational Complexity, 22(2), 429-462. doi:10.1007/s00037-013-0066-8
  5. 17. Degorre, J., Kaplan, M., Laplante, S., & Roland, J. (2011). The communication complexity of non-signaling distributions. Quantum information & computation, 11(7&8), 649-676.
  6. 18. Kaplan, M., Kerenidis, I., Laplante, S., & Roland, J. (2011). Non-local box complexity and secure function evaluation. Quantum information & computation, 11(1-2), 40-69.
  7. 19. Magniez, F., Nayak, A., Roland, J., & Santha, M. (2011). Search via Quantum Walk. SIAM journal on computing, 40(1), 142-164. doi:10.1137/090745854
  8. 20. Altshuler, B., Krovi, H., & Roland, J. (2010). Anderson localization makes adiabatic quantum optimization fail. Proceedings of the National Academy of Sciences of the United States of America, 107(28), 12446-12450.
  9. 21. Krovi, H., Ozols, M., & Roland, J. (2010). Adiabatic condition and the quantum hitting time of Markov chains. Physical review. A, Atomic, Molecular, and Optical Physics, 82(2), 022333. doi:10.1103/PhysRevA.82.022333
  10. 22. Acevedo, O. L., Roland, J., & Cerf, N. (2008). Exploring scalar quantum walks on Cayley graphs. Quantum information & computation, 8(1-2), 68-81.
  11. 23. Degorre, J., Laplante, S., & Roland, J. (2007). Classical simulation of traceless binary observables on any bipartite quantum state. Physical review. A, Atomic, Molecular, and Optical Physics, 75(1), 012309. doi:10.1103/PhysRevA.75.012309
  12. 24. Iblisdir, S., & Roland, J. (2006). Optimal finite measurements and Gauss quadratures. Physical review. A, Atomic, Molecular, and Optical Physics, 358(5-6), 368-372. doi:10.1016/j.physleta.2006.05.045

  13. << Précédent 1 2 3 4 5 6 Suivant >>