Articles dans des revues avec comité de lecture (31)

  1. 25. Roland, J., & Cerf, N. (2005). Noise resistance of adiabatic quantum computation using random matrix theory. Physical review. A, Atomic, Molecular, and Optical Physics, 71(3), 032330. doi:10.1103/PhysRevA.71.032330
  2. 26. Cerf, N., Clavareau, J., Macchiavello, C., & Roland, J. (2005). Quantum entanglement enhances the capacity of bosonic channels with memory. Physical review. A, Atomic, Molecular, and Optical Physics, 72(4), 042330. doi:10.1103/PhysRevA.72.042330
  3. 27. Roland, J., & Cerf, N. (2003). Adiabatic quantum search algorithm for structured problems. Physical review. A, Atomic, Molecular, and Optical Physics, 68(6), 062312. doi:10.1103/PhysRevA.68.062312
  4. 28. Roland, J., & Cerf, N. (2003). Quantum-circuit model of Hamiltonian search algorithms. Physical review. A, Atomic, Molecular, and Optical Physics, 68(6), 062311. doi:10.1103/PhysRevA.68.062311
  5. 29. Roland, J., & Cerf, N. (2002). Quantum search by local adiabatic evolution. Physical review. A, Atomic, Molecular, and Optical Physics, 65(4), 042308. doi:10.1103/PhysRevA.65.042308
  6. 30. Massar, S., Pironio, S., Roland, J., & Gisin, B. (2002). Bell inequalities resistant to detector inefficiency. Physical review. A, Atomic, Molecular, and Optical Physics, 66(5), 052112. doi:10.1103/PhysRevA.66.052112
  7. 31. Hesse, M., Roland, J., & Baye, D. J. (2002). Solving the resonating-group equation on a Lagrange mesh. Nuclear Physics A, 709(1), 184-200. doi:10.1016/S0375-9474(02)01040-0
  8.   Articles dans des revues sans comité de lecture (2)

  9. 1. Arora, A. S., Roland, J., Vlachou, C., & Weis, S. (2022). Solutions to quantum weak coin flipping. Cryptology ePrint Archive., 2022/1101.
  10. 2. Cardinal, J., Joret, G., & Roland, J. (2019). Information-theoretic lower bounds for quantum sorting. arXiv.org., 1902.06473.
  11.   Communications publiées lors de congrès ou colloques nationaux et internationaux (18)

  12. 1. Arora, A. S., Roland, J., & Vlachou, C. (2021). Analytic Quantum Weak Coin Flipping Protocols with Arbitrarily Small Bias. In Proceedings of the Thirty-Second Annual ACM-SIAM Symposium on Discrete Algorithms (p. 919–938). (SODA '21). Society for Industrial and Applied Mathematics.
  13. 2. Arora, A. S., Roland, J., & Weis, S. (2019). Quantum Weak Coin Flipping. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing (p. 205–216). (STOC 2019). Association for Computing Machinery. doi:10.1145/3313276.3316306
  14. 3. Laplante, S., Laurière, M., Nolin, A., Roland, J., & Senno, G. (2016). Robust Bell inequalities from communication complexity. 11th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2016). Vol. 61 (pp. 5:1-5:24). doi:10.4230/LIPIcs.TQC.2016.5

  15. << Précédent 1 2 3 4 5 6 Suivant >>