par Guidi, Gianluca M.;Goldbeter, Albert
Référence Biophysical chemistry, 72, 1-2, page (201-210)
Publication Publié, 1998-05
Article révisé par les pairs
Résumé : Considered is a bienzymatic system consisting of isocitrate dehydrogenase (IDH, EC 1.1.1.42), which transforms NADP+ into NADPH, and of diaphorase (DIA, EC 1.8.1.4), which catalyzes the reverse reaction. Experimental evidence as well as a theoretical model show the possibility of a coexistence between two stable steady states in this reaction system. The phenomenon originates from the regulatory properties of IDH. We extend the analysis of a theoretical model proposed for the IDH-DIA bienzymatic system and investigate the occurrence of different modes of bistability, with or without hysteresis, i.e. in the presence of two or only one limit point bounding the domain of multiple steady states. The analysis indicates that the two types of bistability may sometimes be observed sequentially as a given control parameter is progressively increased. We further obtain conditions in which sustained oscillations develop in the model. These results establish the isocitrate dehydrogenase reaction coupled to diaphorase as a suitable candidate for further experimental and theoretical studies of bistability and oscillations in biochemical systems.