par De Troyer, André ;Leduc, Dimitri
Référence Journal of applied physiology, 102, 6, page (2332-2337)
Publication Publié, 2007-06
Article révisé par les pairs
Résumé : The inspiratory intercostal muscles elevate the ribs and thereby elicit a fall in pleural pressure (DeltaPpl) when they contract. In the present study, we initially tested the hypothesis that this DeltaPpl does, in turn, oppose the rib elevation. The cranial rib displacement (Xr) produced by selective activation of the parasternal intercostal muscle in the fourth interspace was measured in dogs, first with the rib cage intact and then after DeltaPpl was eliminated by bilateral pneumothorax. For a given parasternal contraction, Xr was greater after pneumothorax; the increase in Xr per unit decrease in DeltaPpl was 0.98+/-0.11 mm/cmH2O. Because this relation was similar to that obtained during isolated diaphragmatic contraction, we subsequently tested the hypothesis that the increase in Xr observed during breathing after diaphragmatic paralysis was, in part, the result of the decrease in DeltaPpl, and the contribution of the difference in DeltaPpl to the difference in Xr was determined by using the relation between Xr and DeltaPpl during passive inflation. With diaphragmatic paralysis, Xr during inspiration increased approximately threefold, and 47+/-8% of this increase was accounted for by the decrease in DeltaPpl. These observations indicate that 1) DeltaPpl is a primary determinant of rib motion during intercostal muscle contraction and 2) the decrease in DeltaPpl and the increase in intercostal muscle activity contribute equally to the increase in inspiratory cranial displacement of the ribs after diaphragm paralysis.