Résumé : The energetics of interaction and the type of aggregate structure in lateral assemblies of up to five gramicidin molecules in the beta 6.3 helical conformation at the air/water interface was calculated using conformational analysis procedures. It was found that within the aggregate two types of gramicidin interaction occur. One leading to a linear organization with a mean interaction energy between monomers of -6 kcal/mol and one in a perpendicular direction leading to a circularly organization with a lower mean interaction energy of -10 kcal/mol. Extrapolation towards larger gramicidin assemblies predicts that gramicidin itself could form tubular structures similar to those found in the gramicidin-induced HII phase. The tryptophans appear to play an essential role in the tubular organization of the gramicidin aggregate, since they determine the cone shape of the monomer and contribute to the structure of the monomer and oligomer by stacking interactions. These results, which are discussed in the light of experimental observations of gramicidin self-association in model membranes and the importance of the tryptophans for HII phase formation, further support the view (Killian, J.A. and De Kruijff, B. (1986) Chem. Phys. Lipids 40, 259-284) that gramicidin is a first example of a new class of hydrophobic polypeptides which can form cylindrical structures within the hydrophobic core of the membrane.