Résumé : The emission properties of a non intercalating complex, [Ru(TAP)2(dip)]2+ (TAP = 1,4,5,8-tetraazaphenanthrene; dip = 4,7-diphenyl-1,10-phenanthroline), tethered to 17-mer single-stranded oligodeoxyribonucleotides (ODNs) either in the middle or at the 5'-end of the sequence, are determined. The results highlight the fact that the luminescence of this metallic compound is sufficiently sensitive to its microenvironment to probe self-structuration of these short single-stranded ODNs. It is shown that the weighted averaged emission lifetimes (tau(M)) along with the quenching rate constants of luminescence by oxygen reflect particularly well different structures adopted by the different ODNs sequences. The determination of these parameters thus offers an elegant way to examine possible structurations of synthetic single-stranded ODNs that play important roles in biological applications.