par Kurosawa, Gen;Goldbeter, Albert
Référence Journal of theoretical biology, 242, 2, page (478-488)
Publication Publié, 2006-09
Article révisé par les pairs
Résumé : An intriguing property of circadian clocks is that their free-running period is not exactly 24h. Using models for circadian rhythms in Neurospora and Drosophila, we determine how the entrainment of these rhythms is affected by the free-running period and by the amplitude of the external light-dark cycle. We first consider the model for Neurospora, in which light acts by inducing the expression of a clock gene. We show that the amplitude of the oscillations of the clock protein entrained by light-dark cycles is maximized when the free-running period is smaller than 24h. Moreover, if the amplitude of the light-dark cycle is very strong, complex oscillations occur when the free-running period is close to 24h. In the model for circadian rhythms in Drosophila, light acts by enhancing the degradation of a clock protein. We show that while the amplitude of circadian oscillations entrained by light-dark cycles is also maximized if the free-running period is smaller than 24h, the range of entrainment is centered around 24h in this model. We discuss the physiological relevance of these results in regard to the setting of the free-running period of the circadian clock.