par Verbanck, Michel
Référence Water science and technology, 25, 8, page (71-82)
Publication Publié, 1992
Article révisé par les pairs
Résumé : Although sewer sediments are now widely recognized as a major source of misfunction of urban drainage systems (for both hydraulic and environmental considerations), it is still too infrequent that priority of research activities in this area is given to field studies. The measuring campaigns conducted since 1986 in the drainage system of Brussels-North have been focused on sedimentation processes in the major sewer lines. There is an obvious distinction to be made between solids constituting the sediment bed of a man-entry sewer, which are relevant for its hydraulic capacity, and the ones contributing to the pollutional impact of CSOs upon receiving waters. The material which is removed several times a year from the main trunk sewer of Brussels is coarse, granular and has a low environmental impact, notably because of its limited mobility. This appears to be due to a very efficient granulometric grading, as a result firstly of the retention of the coarsest solids in highly selective gully-pot inlets, and secondly of an elutriation process removing from the sediment bed all fine organic-rich particles during daily peak flows. There is evidence to show that the build-up of the sediment bed in these large-sized sewers is driven by a bed-load process (active even during dry spells), while the solid material responsible for the detrimental effects of CSOs (which is much finer) is primarily transported through wash-load and suspended-load.Although sewer sediments are now widely recognized as a major source of misfunction of urban drainage systems (for both hydraulic and environmental considerations), it is still too infrequent that priority of research activities in this area is given to field studies. The measuring campaigns conducted since 1986 in the drainage system of Brussels-North have been focused on sedimentation processes in the major sewer lines. There is an obvious distinction to be made between solids constituting the sediment bed of a man-entry sewer, which are relevant for its hydraulic capacity, and the ones contributing to the pollutional impact of CSOs upon receiving waters. The material which is removed several times a year from the main trunk sewer of Brussels is coarse, granular and has a low environmental impact, notably because of its limited mobility. This appears to be due to a very efficient granulometric grading, as a result firstly of the retention of the coarsest solids in highly selective gully-pot inlets, and secondly of an elutriation process removing from the sediment bed all fine organic-rich particles during daily peak flows. There is evidence to show that the build-up of the sediment bed in these large-sized sewers is driven by a bed-load process (active even during dry spells), while the solid material responsible for the detrimental effects of CSOs (which is much finer) is primarily transported through wash-load and suspended-load.