par Montes De Oca Roldan, Marco ;Stützle, Thomas ;Birattari, Mauro ;Dorigo, Marco
Référence International Conference on Self-Adaptive and Self-Organizing Systems, page (243-252), 5630085
Publication Publié, 2010
Référence International Conference on Self-Adaptive and Self-Organizing Systems, page (243-252), 5630085
Publication Publié, 2010
Article révisé par les pairs
Résumé : | Positive feedback and a consensus-building procedure are the key elements of a self-organized decision-making mechanism that allows a population of agents to collectively determine which of two actions is the fastest to execute. Such a mechanism can be seen as a collective learning algorithm because even though individual agents do not directly compare the available alternatives, the population is able to select the action that takes less time to perform, thus potentially improving the efficiency of the system. However, when a large population is involved, the time required to reach consensus on one of the available choices may render impractical such a decision-making mechanism. In this paper, we tackle this problem by applying the incremental social learning approach, which consists of a growing population size coupled with a social learning mechanism. The obtained experimental results show that by using the incremental social learning approach, the collective learning process can be accelerated substantially. The conditions under which this is true are described. |