Article révisé par les pairs
Résumé : This paper proposes a novel class of Command Governor (CG) strategies for input and state-related constrained discrete-time LTI systems subject to bounded disturbances in the absence of explicit state or output measurements. While in traditional CG schemes the set-point manipulation is undertaken on the basis of either the actual measure of the state or its suitable estimation, it is shown here that the CG design problem can be solved, with limited performance degradation and with similar properties, also in the case that such an explicit measure is not available. This approach, which will be referred to as the Feed-Forward CG (FF-CG) approach, may be a convenient alternative CG solution in all situations whereby the cost of measuring the state may be a severe limitation, e.g. in distributed or decentralized applications. In order to evaluate the method here proposed, numerical simulations on a physical example have been undertaken and comparisons with the standard state-based CG solution reported.