par Abel, Z.;Ballinger, Brad;Bose, Prosenjit
;Collette, Sébastien
;Dujmović, Vida V.;Hurtado, Ferran
;Kominers, S.D.;Langerman, Stefan
;Pór, A.;Wood, David 
Référence Graphs and combinatorics, 27, 1, page (47-60)
Publication Publié, 2010





Référence Graphs and combinatorics, 27, 1, page (47-60)
Publication Publié, 2010
Article révisé par les pairs
Résumé : | We prove the following generalised empty pentagon theorem for every integer ℓ ≥ 2, every sufficiently large set of points in the plane contains ℓ collinear points or an empty pentagon. As an application, we settle the next open case of the "big line or big clique" conjecture of Kára, Pór, and Wood [Discrete Comput. Geom. 34(3):497-506, 2005]. © 2010 Springer. |